Why Does The Segmentation Fault Occur on Linux / UNIX Systems?

: preg_replace(): The /e modifier is deprecated, use preg_replace_callback instead in /var/www/virtual/rlogix/includes/unicode.inc on line 311.

According to wikipedia:

A segmentation fault occurs when a program attempts to access a memory location that it is not allowed to access, or attempts to access a memory location in a way that is not allowed (for example, attempting to write to a read-only location, or to overwrite part of the operating system).

Usually signal #11 (SIGSEGV) set, which is defined in the header file signal.h file. The default action for a program upon receiving SIGSEGV is abnormal termination. This action will end the process, but may generate a core file (also known as core dump) to aid debugging, or perform some other platform-dependent action. A core dump is the recorded state of the working memory of a computer program at a specific time, generally when the program has terminated abnormally.

Segmentation fault can also occur under following circumstances:

a) A buggy program / command, which can be only fixed by applying patch.

b) It can also appear when you try to access an array beyond the end of an array under C programming.

c) Inside a chrooted jail this can occur when critical shared libs, config file or /dev/ entry missing.

d) Sometime hardware or faulty memory or driver can also create problem.

e) Maintain suggested environment for all computer equipment (overheating can also generate this problem).
Suggestions to debug Segmentation Fault errors

To debug this kind of error try one or all of the following techniques :

* Use gdb to track exact source of problem.
* Make sure correct hardware installed and configured.
* Always apply all patches and use updated system.
* Make sure all dependencies installed inside jail.
* Turn on core dumping for supported services such as Apache.
* Use strace which is a useful diagnostic, instructional, and debugging tool.
* Google and find out if there is a solution to problem.
* Fix your C program for logical errors such as pointer, null pointer, arrays and so on.
* Analyze core dump file generated by your system using gdb

-------------------------------------------------------------------------------
Example Debugging Session: Segmentation Fault Example

We are going to use gdb to figure out why the following program causes a segmentation fault. The program is meant to read in a line of text from the user and print it. However, we will see that in it's current state it doesn't work as expected...

1 : #include
2 : #include

3 : int main(int argc, char **argv)
4 : {
5 : char *buf;
6 :
7 : buf = malloc(1<<31);
8 :
9 : fgets(buf, 1024, stdin);
10: printf("%s\n", buf);
11:
12: return 1;
13: }

The first step is to compile the program with debugging flags:

prompt> gcc -g segfault.c

Now we run the program:

prompt > a.out
Hello World!
Segmentation fault
prompt >

This is not what we want. Time to fire up gdb:

prompt > gdb a.out
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...
(gdb)

We'll just run it and see what happens:

(gdb) run
Starting program: /home/dgawd/cpsc/363/a.out
test string

Program received signal SIGSEGV, Segmentation fault.
0x4007fc13 in _IO_getline_info () from /lib/libc.so.6

So we received the SIGSEGV signal from the operating system. This means that we tried to access an invalid memory address. Let's take a backtrace:

(gdb) backtrace
#0 0x4007fc13 in _IO_getline_info () from /lib/libc.so.6
#1 0x4007fb6c in _IO_getline () from /lib/libc.so.6
#2 0x4007ef51 in fgets () from /lib/libc.so.6
#3 0x80484b2 in main (argc=1, argv=0xbffffaf4) at segfault.c:10
#4 0x40037f5c in __libc_start_main () from /lib/libc.so.6

We are only interested in our own code here, so we want to switch to stack frame 3 and see where the program crashed:

(gdb) frame 3
#3 0x80484b2 in main (argc=1, argv=0xbffffaf4) at segfault.c:10
10 fgets(buf, 1024, stdin)

We crashed inside the call to fgets. In general, we can assume that library functions such as fgets work properly (if this isn't the case, we are in a lot of trouble). So the problem must be one of our arguments. You may not know that 'stdin' is a global variable that is created by the stdio libraries. So we can assume this one is ok. That leaves us with 'buf':

(gdb) print buf
$1 = 0x0

The value of buf is 0x0, which is the NULL pointer. This is not what we want - buf should point to the memory we allocated on line 8. So we're going to have to find out what happened there. First we want to kill the currently-running invocation of our program:

(gdb) kill
Kill the program being debugged? (y or n) y

Now set a breakpoint on line 8:

(gdb) break segfault.c:8
Breakpoint 1 at 0x8048486: file segfault.c, line 8.

Now run the program again:

(gdb) run
Starting program: /home/dgawd/cpsc/363/a.out

Breakpoint 1, main (argc=1, argv=0xbffffaf4) at segfault.c:8
8 buf = malloc(1<<31);

We're going to check the value of buf before the malloc call. Since buf wasn't initialized, the value should be garbage, and it is:

(gdb) print buf
$2 = 0xbffffaa8 "Иъяї#\177\003@t`\001@\001"

Now step over the malloc call and examine buf again:

(gdb) next
10 fgets(buf, 1024, stdin);
(gdb) print buf
$3 = 0x0

After the call to malloc, buf is NULL. If you were to go check the man page for malloc, you would discover that malloc returns NULL when it cannot allocate the amount of memory requested. So our malloc must have failed. Let's go back and look at it again:

7 : buf = malloc(1<<31);

Well, the value of the expression 1 << 31 (the integer 1 right-shifted 31 times) is 429497295, or 4GB (gigabytes). Very few machines have this kind of memory - mine only has 256MB. So of cousre malloc would fail. Furthermore, we are only reading in 1024 bytes in the fgets call. All that extra space would be wasted, even if we could allocate it. Change the 1<<31 to 1024 (or 1<<9), and the program will work as expected:

prompt >
Hello World!
Hello World!

prompt >

So now you know how to debug segmentation faults with gdb. This is extremely useful (I use it more often then I care to admit). The example also illustrated another very important point: ALWAYS CHECK THE RETURN VALUE OF MALLOC! Have a nice day.